Geometry of the Submanifolds of SEX_n. II. The Generalized Fundamental Equations for the Hypersubmanifold of SEX_n

Kyung Tae Chung¹ and Jong Woo Lee¹

Received February 27, 1989

A connection which is both Einstein and semisymmetric is called an SE connection, and a generalized *n*-dimensional Riemannian manifold on which the differential geometric structure is imposed by $g_{\lambda\mu}$ through an SE connection is called an *n*-dimensional SE manifold and denoted by SEX_n. This paper is a direct continuation of earlier work. In this paper, we derive the generalized fundamental equations for the hypersubmanifold of SEX_n, including generalized Gauss formulas, generalized Weingarten equations, and generalized Gauss-Codazzi equations.

1. PRELIMINARIES

This paper is a direct continuation of Chung *et al.* (1989), which will be denoted by I in further considerations in the present paper. It is based on the results and symbolism of I. Whenever necessary, these results will be quoted in the text.

Let SEX_n be an n-dimensional SE manifold connected by an SE connection $\Gamma_{\lambda\mu}^{\nu}$. Let X_{n-1} be the hypersubmanifold of SEX_n connected by the induced connection Γ_{ij}^{k} of $\Gamma_{\lambda\mu}^{\nu}$ on SEX_n. In virtue of I, Remark 4.3, X_{n-1} is also an SE manifold.

Since m = n - 1 in our case, there exists only one unit normal N^{α} to X_{n-1} satisfying [(I.3.5)]

$$h_{\alpha\beta}B_i^{\alpha}N^{\beta} = N_{\alpha}B_i^{\alpha} = 0, \qquad h_{\alpha\beta}N^{\alpha}N^{\beta} = 1$$
(1.1)

Therefore, some results obtained in I should be revised. In the following we list those revised results which are necessary in the present paper.

¹Department of Mathematics, Yonsei University, Seoul, Korea.

867

The tensor B_{λ}^{ν} satisfies the following identities [(I.3.19)]:

$$B_{\lambda}^{\nu} = \delta_{\lambda}^{\nu} - N_{\lambda} N^{\nu} \tag{1.2a}$$

$$B^{\alpha}_{\lambda}N_{\alpha} = B^{\nu}_{\alpha}N^{\alpha} = 0 \tag{1.2b}$$

The symmetric and skew-symmetric parts of the induced metric tensor g_{ij} on X_{n-1} of $g_{\lambda\mu}$ in SEX_n are given by [(1.3.26)]

$$h_{ij} = h_{\alpha\beta} B_i^{\alpha} B_j^{\beta}, \qquad k_{ij} = k_{\alpha\beta} B_i^{\alpha} B_j^{\beta}$$
(1.3)

In virtue of the condition (I.3.28), there exists a unique tensor h^{ik} defined by $h_{ij}h^{ik} = \delta_j^k$, and the tensors h_{ij} and h^{ij} may be used for raising and/or lowering indices of the induced tensors on X_{n-1} in the usual manner (I, Theorem 3.11b). However, the reverse relations of (1.3) may be given by [(I.3.30)]

$$h_{\lambda\mu} = h_{ij} B^i_{\lambda} B^j_{\mu} + N_{\lambda} N_{\mu} \tag{1.4a}$$

$$h^{\lambda\nu} = h^{ij} B^{\lambda}_i B^{\nu}_j + N^{\lambda} N^{\nu}$$
(1.4b)

Let Ω_{ij} be the generalized coefficients of the second fundamental form of X_{n-1} and $\overset{0}{D_j}$ be the symbolic vector of the generalized covariant derivative with respect to the x's. Then the vector $\overset{0}{D_j}B_i^{\alpha}$ in SEX_n is normal to X_{n-1} and may be given by [(I.3.36), (I.3.37)]

$$\overset{0}{D_{j}}B_{i}^{\alpha} = -\Omega_{ij}N^{\alpha} \tag{1.5}$$

where

$$\Omega_{ij} = -(\overset{0}{D_j} B_i^{\alpha}) N_{\alpha}$$
(1.6)

Furthermore, the tensor Ω_{ij} is the induced tensor on X_{n-1} of the tensor $D_{\beta}N_{\alpha}$ in SEX_n. That is [(I.3.38)],

$$\Omega_{ij} = (D_{\beta} N_{\alpha}) B_i^{\alpha} B_j^{\beta} \tag{1.7}$$

On the X_{n-1} of a SEX_n the SE identity (I-4.3) can be written as

$$k_{\alpha\beta}(\Omega_{ik}B_j^{\alpha} - \Omega_{kj}B_i^{\alpha})N^{\beta} = 0$$
(1.8)

2. THE GENERALIZED FUNDAMENTAL EQUATIONS FOR THE HYPERSUBMANIFOLD OF SEX_n

This section is devoted to the derivation of the generalized fundamental equations for the hypermanifold X_{n-1} of SEX_n. Here we derive the generalized Gauss formulas, Weingarten equations, and Gauss-Codazzi equations for X_{n-1} .

868

Submanifolds of SEX_n. II

Theorem 2.1. On X_{n-1} of an SEX_n the generalized coefficients of the second fundamental form Ω_{ij} may be given by

$$\Omega_{ij} = \Omega_{ij}^0 - 2k_{(\alpha}{}^{\gamma}X_{\beta})B_i^{\alpha}B_j^{\beta}N_{\gamma}$$
(2.1)

where $\hat{\Omega}_{ij}$ are the coefficients of the second fundamental form with respect to the Christoffel symbols $\{\lambda_{\mu\mu}^{\nu}\}$.

Proof. Substituting (I.2.12) into (1.7) and making use of (1.1) and (1.7), our assertion follows in the following way:

$$\Omega_{ij} = [\partial_{\beta} N_{\alpha} - N_{\gamma} (\{ {}^{\gamma}_{\alpha\beta} \} + 2k_{(\alpha}{}^{\gamma}X_{\beta}) + 2\delta_{[\alpha}{}^{\gamma}X_{\beta}])]B_{i}^{\alpha}B_{j}^{\beta}$$
$$= \Omega_{ij}^{0} - 2k_{(\alpha}{}^{\gamma}X_{\beta})B_{i}^{\alpha}B_{j}^{\beta}N_{\gamma}$$

Remark 2.2. In virtue of (2.1), we note that the tensor Ω_{ij} is symmetric

on X_{n-1} of SEX_n, while the generalized coefficients $\hat{\Omega}_{ij}$ is not symmetric on a general submanifold X_m of X_n [(I.3.38)].

Theorem 2.3. (The generalized Gauss formulas for SEX_n.) On the X_{n-1} of a SEX_n the following relation holds

$$D_j B_i^{\alpha} = -\hat{\Omega}_{ij}^0 N^{\alpha} + 2k_{(\beta}^{\ \varepsilon} X_{\gamma)} B_i^{\beta} B_j^{\gamma} N_{\varepsilon} N^{\alpha}$$
(2.2)

Proof. Substituting (2.1) into (1.5), we have (2.2).

In order to prove the generalized Weingarten equations, we need the induced tensors M_j^i of $D_\beta N^\alpha$ and M_j of $(D_\beta N^\alpha)N_\alpha$, respectively, on X_{n-1} of SEX_n:

$$M_j^i = (D_\beta N^\alpha) B_\alpha^i B_j^\beta \tag{2.3a}$$

$$M_{j} = (D_{\beta}N^{\alpha})N_{\alpha}B_{j}^{\beta} = -(D_{\beta}N_{\alpha})N^{\alpha}B_{j}^{\beta}$$
(2.3b)

In the following three theorems, we derive useful representations of the induced tensors M_i^i and M_i .

Theorem 2.3. In an SEX_n the system of equations (I.2.8b) may be given by

$$D_{\omega}g_{\lambda\mu} = 4g_{\lambda[\omega}X_{\mu]} \tag{2.4}$$

which can be split into

$$D_{\omega}h_{\lambda\mu} = 2(X_{(\lambda}g_{\mu)\omega} - h_{\lambda\mu}X_{\omega})$$
(2.5a)

$$D_{\omega}k_{\lambda\mu} = 2(X_{[\mu}g_{\lambda]\omega} - k_{\lambda\mu}X_{\omega})$$
(2.5b)

Furthermore, in an SEX_n we also have

$$D_{\omega}h^{\lambda\nu} = -2h^{\lambda\alpha}h^{\nu\beta}(X_{(\alpha}g_{\beta)\omega} - h_{\alpha\beta}X_{\omega})$$
(2.6)

....

Proof. Substitution of (1.2.9) into (1.2.8b) gives (2.4). Equations (2.5a) and (2.5b) follows from (2.4) and

$$D_{\omega}h_{\lambda\mu} = D_{\omega}g_{(\lambda\mu)}, \qquad D_{\omega}k_{\lambda\mu} = D_{\omega}g_{[\lambda\mu]}$$

On the other hand, if we differentiate both sides of (I.2.4) with respect to y^{ν} and substitute (2.5a), we get

$$h_{\lambda\mu}D_{\omega}h^{\lambda\nu} = -h^{\lambda\nu}D_{\omega}h_{\lambda\mu} = -2h^{\lambda\nu}(X_{(\lambda}g_{\mu)\omega} - h_{\lambda\mu}X_{\omega})$$

The relation (2.6) follows immediately by multiplying by $h^{\alpha\mu}$ on both sides of the above equation.

Theorem 2.4. The induced tensor M_i^i is given by

$$M_{j}^{i} = -2h^{im}X_{(\alpha}k_{\beta)\gamma}N^{\alpha}B_{m}^{\beta}B_{j}^{\gamma} - \delta_{j}^{i}X_{\alpha}N^{\alpha} + h^{im}\Omega_{mj}$$
(2.7)

Proof. Equation (2.3a) gives

$$M_{j}^{i} = (D_{\beta}(h^{\alpha\gamma}N_{\gamma}))B_{\alpha}^{i}B_{\beta}^{\beta}$$
$$= (D_{\beta}h^{\alpha\gamma})N_{\gamma}B_{\alpha}^{i}B_{\beta}^{\beta} + h^{\alpha\gamma}(D_{\beta}N_{\gamma})B_{\alpha}^{i}B_{\beta}^{\beta}$$
(2.8)

Substituting (2.6) into (2.8) and making use of (1.3), (I-3.18), (1.1), and (1.7), we have (2.7). \blacksquare

Theorem 2.5. The induced vector M_j is given by

$$M_j = X_{\alpha} B_j^{\alpha} - X_{(\alpha} k_{\beta)\gamma} N^{\alpha} N^{\beta} B_j^{\gamma}$$
(2.9)

Proof. Generalized covariant differentiation of both sides of the last relation of (1.1) with respect to x^{j} gives

$$(D_{\gamma}h_{\alpha\beta})N^{\alpha}N^{\beta}B_{j}^{\gamma}+2h_{\alpha\beta}(D_{\gamma}N^{\alpha})N^{\beta}B_{j}^{\gamma}=0 \qquad (2.10)$$

Our representation (2.9) immediately follows by substituting (2.5a) and (2.3b) into (2.10) and making use of (1.1). \blacksquare

Now, we are ready to prove the following generalized Weingarten equations.

Theorem 2.6a. (The first representation of the generalized Weingarten equations in SEX_n .) On the X_{n-1} of an SEX_n the following relation holds:

$$D_{j}^{0}N^{\alpha} = X_{(\varepsilon}k_{\beta)\gamma}(N^{\alpha}N^{\beta} - 2h^{\alpha\beta})N^{\varepsilon}B_{j}^{\gamma} + h^{im}\Omega_{mj}B_{i}^{\alpha}$$
$$- X_{\beta}N^{\beta}B_{j}^{\alpha} + X_{\beta}N^{\alpha}B_{j}^{\beta}$$
(2.11)

Proof. Substituting (1.2a) for δ^{α}_{γ} into

$$\overset{\circ}{D}_{j}N^{\alpha} = (D_{\beta}N^{\alpha})B_{j}^{\beta} = (\delta^{\alpha}_{\gamma}D_{\beta}N^{\gamma})N_{j}^{\beta}$$

and making use of (2.3a), (2.3b), and (I.3.15), we have

$$\overset{\circ}{D}_{j}N^{\alpha} = M^{i}_{j}B^{\alpha}_{i} + M_{j}N^{\alpha} \qquad (2.12)$$

Submanifolds of SEX_n. II

Our assertion (2.11) immediately follows by substituting (2.7) and (2.9) into (2.12) and making use of (1.4b). \blacksquare

Theorem 2.6b. (The second representation of the generalized Weingarten equations in SEX_n .) On the X_{n-1} of an SEX_n the following relation holds:

$${}^{0}_{D_{j}}N_{\alpha} = \Omega_{ij}B^{i}_{\alpha} + X_{(\beta}k_{\varepsilon})_{\gamma}N_{\alpha}N^{\beta}N^{\varepsilon}B^{\gamma}_{j} - X_{\beta}N_{\alpha}B^{\beta}_{j}$$
(2.13)

Proof. Substituting (2.5a) and (2.11) into

$$\overset{0}{D_j}N_{\alpha} = \overset{0}{D_j}(h_{\alpha\beta}N^{\beta}) = h_{\alpha\beta}\overset{0}{D_j}N^{\beta} + (D_{\gamma}h_{\alpha\beta})N^{\beta}B_j^{\gamma}$$

and making use of (1.1), we have (2.13).

In order to derive the generalized Gauss-Codazzi equations, we need the following curvature tensors of SEX_n and its hypersubmanifold X_{n-1} :

$$R_{\omega\mu\lambda}^{\nu} = 2(\partial_{[\mu}\Gamma^{\nu}_{|\lambda|\omega]} + \Gamma^{\nu}_{\alpha[\mu}\Gamma^{\alpha}_{|\lambda|\omega]})$$
(2.14)

$$R_{ijk}^{\ m} = 2(\partial_{[j}\Gamma^{m}_{|k|i]} + \Gamma^{m}_{p[j}\Gamma^{p}_{|k|i]})$$
(2.15)

Theorem 2.7. (The generalized Gauss-Codazzi equations in SEX_n.) On the X_{n-1} of an SEX_n the curvature tensors defined by (2.14) and (2.15) are involved in the following identities:

$$R_{ijk}^{\ p} = R_{\beta\gamma\varepsilon}^{\ \alpha}B_{\alpha}^{\ p}B_{k}^{\ \varepsilon}B_{j}^{\ \gamma}B_{i}^{\ \beta} + 2(\Omega_{m[j}\Omega_{|k|i]}h^{mp}B_{p}^{\ \alpha} + X_{\beta}N^{\beta}\Omega_{k[j}\delta_{i]}^{\ p} + k_{\gamma}^{\ \alpha}X_{\beta}N^{\beta}\Omega_{k[i}B_{j]}^{\ \gamma}B_{\alpha}^{\ p})$$
(2.16)

$$2\overset{0}{D}_{[k}\Omega_{|i|j]} = R_{\beta\gamma\varepsilon}{}^{\alpha}N_{\alpha}B^{\beta}_{k}B^{\gamma}_{j}B^{\varepsilon}_{i} + 2(X_{\beta}\Omega_{i[k}B^{\beta}_{j]} + 2\Omega_{i[k}X_{j]}) \qquad (2.17)$$

Proof. In virtue of (1.5), (2.14), (2.15), and

$${}^{0}_{D_{j}}B_{i}^{\alpha} = B_{ij}^{\alpha} + \Gamma_{\beta\gamma}^{\alpha}B_{i}^{\beta}B_{j}^{\gamma} - \Gamma_{ij}^{k}B_{k}^{\alpha}$$

we have

$$2 \overset{0}{D}_{[k} \overset{0}{D}_{j]} B_{i}^{\alpha} = 2 [\partial_{[k} (\overset{0}{D}_{j]} B_{i}^{\alpha}) - \Gamma_{[jk]}^{m} (\overset{0}{D}_{m} B_{i}^{\alpha}) - \Gamma_{i[k}^{m} (\overset{0}{D}_{j]} B_{m}^{\alpha}) + \Gamma_{\beta\gamma}^{\alpha} (\overset{0}{D}_{[j} B_{[i]}^{\beta}) B_{k]}^{\gamma}]$$
$$= -R_{\epsilon\gamma\beta}^{\alpha} B_{i}^{\beta} B_{j}^{\gamma} B_{k}^{\epsilon} + R_{kji}^{m} B_{m}^{\alpha} + 4\Omega_{i[j} X_{k]} N^{\alpha}$$
(2.18)

where use of the relation

$$S_{jk}^{m} = 2\delta_{[j}^{m}X_{k]}$$

has been made in the above lengthy calculation. On the other hand, the relations (1.5) and (2.11) give

$$D_{lk}^{0}D_{jl}B_{i}^{\alpha} = -2(D_{lk}^{0}\Omega_{|i|j]})N^{\alpha} - 2\Omega_{i[j}D_{k]}^{0}N^{\alpha}$$

$$= -2(D_{lk}^{0}\Omega_{|i|j]} + X_{\beta}\Omega_{i[j}B_{k]}^{\beta})N^{\alpha}$$

$$-2X_{(\varepsilon}k_{\beta)\gamma}N^{\varepsilon}N^{\beta}B_{[k}^{\gamma}\Omega_{|i|j]}N^{\alpha} + 2\Omega_{m[j}\Omega_{|i|k]}h^{mp}B_{p}^{\alpha}$$

$$+2X_{\beta}N^{\beta}\Omega_{i[j}B_{k]}^{\alpha} + 4h^{\alpha\beta}X_{(\varepsilon}k_{\beta)\gamma}N^{\varepsilon}\Omega_{i[j}B_{k]}^{\gamma} \qquad (2.19a)$$

In virtue of the SE identity (1.8) and the symmetry of Ω_{ij} , the second and the fifth terms of the last equation of (2.19a) are

Second Term = 0
$$(2.19b)$$

Fifth Term =
$$-2X_{\varepsilon}k_{\gamma}^{\alpha}N^{\varepsilon}\Omega_{i[j}B_{\lambda]}^{\gamma}+2X^{\alpha}k_{\varepsilon\gamma}\Omega_{i[j}B_{\lambda]}^{\gamma}N^{\varepsilon}$$

= $2k_{\gamma}^{\alpha}X_{\beta}N^{\beta}\Omega_{i[k}B_{j]}^{\gamma}$ (2.19c)

Comparing (2.18) and (2.19), one finally gets

$$R_{kji}^{\alpha} B_{m}^{\alpha} = R_{\varepsilon\gamma\beta}^{\alpha} B_{i}^{\beta} B_{j}^{\gamma} B_{k}^{\varepsilon} + 2(-\overset{0}{D}_{[k}\Omega_{[i|j]} + X_{\beta}\Omega_{i[k}B_{j]}^{\beta} + 2\Omega_{i[k}X_{j]})N^{\alpha} + 2(\Omega_{m[j}\Omega_{[i|k]}h^{mh}B_{h}^{\alpha} + X_{\beta}N^{\beta}\Omega_{i[j}B_{k]}^{\alpha} + k_{\gamma}^{\alpha}X_{\beta}N^{\beta}\Omega_{i[k}B_{j]}^{\gamma})$$
(2.20)

Making use of (I.3.16), the identity (2.16) follows by multiplying by B^p_{α} on both sides of (2.20) and interchanging the indices *i* and *k*. On the other hand, multiplying by N_{α} on both sides of (2.20) and using the SE identity (1.8), we have (2.17).

REFERENCES

Chung, K. T. (1963). Einstein's connection in terms of *g^{λν}, Nuovo Cimento (X), 27, 1297-1324.
Chung, K. T., and Song, M. S. (1968). Conformal change in Einstein's *g^{λν}-unified field theory. -I, Nuovo Cimento (X), 58B, 201-212.

- Chung, K. T., and Chang, K. S. (1969). Degenerate cases of the Einstein's connection in *g-UFT. -I, *Tensor*, 20, 143-149.
- Chung, K. T., and Han, T. S. (1981a). *n*-dimensional representations of the unified field tensor ${}^*g^{\lambda\nu}$, International Journal of Theoretical Physics, **20**, 739-747.
- Chung, K. T., and Yang, S. K. (1981b). On the relations of two Einstein's 4-dimensional unified field theories, *Journal of Korean Mathematical Society*, **18**, 43-48.
- Chung, K. T., and Cho, C. H. (1983). Some recurrence relations and Einstein's connection in 2-dimensional unified field theory, Acta Mathematical Hungarica, 41, 47-52.
- Chung, K. T., and Cheoi, D. H. (1985). A study on the relations of two n-dimensional unified field theories, Acta Mathematica Hungarica, 45, 141-149.
- Chung, K. T., and Cho, C. H. (1987). On the *n*-dimensional SE-connection and its conformal change, *Nuovo Cimento*, **100B**(4), 537-550.
- Chung, K. T., and Lee, I. Y. (1988a). Curvature tensors and unified field equations on SEX_n , International Journal of Theoretical Physics, 27, 1083-1104.

Submanifolds of SEX_n. II

- Chung, K. T., and Hwang, I. H. (1988b). Three- and five-dimensional considerations of the geometry of Einstein's *g-unified field theory, *International Journal of Theoretical Physics*, 27, 1105-1136.
- Chung, K. T., So, K. S., and Lee, J. W. (1989). On the geometry of the submanifolds of SEX_n. I. The C-nonholonomic frame of reference, *International Journal of Theoretical Physics*, **28**, 851-866.
- Einstein, A. (1950). *The Meaning of Relativity*, Princeton University Press, Princeton, New Jersey.
- Hlavatý, V. (1957). Geometry of Einstein's Unified Field Theory, Noordhoop.
- Mishra, R. S. (1962). Recurrence relations in Einstein's unified field theory, *Tensor*, N.S., 12, 90.
- Wrede, R. C. (1958). *n*-dimensional considerations of the basic principles A and B of the unified theory of relativity, *Tensor*, 8, 95-122.