Geometry of the Submanifolds of SEX_n. **II. The Generalized Fundamental Equations for the Hypersubmanifold of SEX**_n

Kyung Tae Chung¹ and Jong Woo Lee¹

Received February 27, 1989

A connection which is both Einstein and semisymmetric is called an SE connection, and a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by $g_{\lambda\mu}$ through an SE connection is called an *n*-dimensional SE manifold and denoted by SEX_n . This paper is a direct continuation of earlier work. In this paper, we derive the generalized fundamental equations for the hypersubmanifold of SEX,,, including generalized Gauss formulas, generalized Weingarten equations, and generalized Gauss-Codazzi equations.

1. PRELIMINARIES

This paper is a direct continuation of Chung *et al.* (1989), which will be denoted by I in further considerations in the present paper. It is based on the results and symbolism of I. Whenever necessary, these results will be quoted in the text.

Let SEX_n be an *n*-dimensional SE manifold connected by an SE connection $\Gamma_{\lambda\mu}^{\nu}$. Let X_{n-1} be the hypersubmanifold of SEX_n connected by the induced connection Γ_{ij}^k of $\Gamma_{\lambda\mu}^{\nu}$ on SEX_n. In virtue of I, Remark 4.3, *X,_1 is also an SE manifold.*

Since $m = n - 1$ in our case, there exists only one unit normal N^{α} to X_{n-1} satisfying $[(1.3.5)]$

$$
h_{\alpha\beta}B_i^{\alpha}N^{\beta} = N_{\alpha}B_i^{\alpha} = 0, \qquad h_{\alpha\beta}N^{\alpha}N^{\beta} = 1 \tag{1.1}
$$

Therefore, some results obtained in I should be revised. In the following we list those revised results which are necessary in the present paper.

¹Department of Mathematics, Yonsei University, Seoul, Korea.

867

The tensor B_{λ}^{ν} satisfies the following identities [(I.3.19)]:

$$
B_{\lambda}^{\nu} = \delta_{\lambda}^{\nu} - N_{\lambda} N^{\nu} \tag{1.2a}
$$

$$
B_{\lambda}^{\alpha} N_{\alpha} = B_{\alpha}^{\nu} N^{\alpha} = 0 \qquad (1.2b)
$$

The symmetric and skew-symmetric parts of the induced metric tensor g_{ii} on X_{n-1} of $g_{\lambda\mu}$ in SEX_n are given by [(I.3.26)]

$$
h_{ij} = h_{\alpha\beta} B_i^{\alpha} B_j^{\beta}, \qquad k_{ij} = k_{\alpha\beta} B_i^{\alpha} B_j^{\beta} \qquad (1.3)
$$

In virtue of the condition (I.3.28), there exists a unique tensor h^{ik} defined by $h_{ij}h^{ik} = \delta_j^k$, and the tensors h_{ij} and h^{ij} may be used for raising and/or lowering indices of the induced tensors on X_{n-1} in the usual manner (I, Theorem 3.11b). However, the reverse relations of (1.3) may be given by $[(1.3.30)]$

$$
h_{\lambda\mu} = h_{ij} B^i_{\lambda} B^j_{\mu} + N_{\lambda} N_{\mu} \tag{1.4a}
$$

$$
h^{\lambda \nu} = h^{ij} B_i^{\lambda} B_j^{\nu} + N^{\lambda} N^{\nu} \tag{1.4b}
$$

Let Ω_{ij} be the generalized coefficients of the second fundamental form of X_{n-1} and $\bigcup_{i=1}^{n}$ be the symbolic vector of the generalized covariant derivative 0 with respect to the x's. Then the vector $D_i B_i^{\alpha}$ in SEX_n is normal to X_{n-1} and may be given by $[(1.3.36), (1.3.37)]$

$$
\stackrel{0}{D_j} B_i^{\alpha} = -\Omega_{ij} N^{\alpha} \tag{1.5}
$$

where

$$
\Omega_{ij} = -(\stackrel{0}{D_j}B_i^{\alpha})N_{\alpha} \tag{1.6}
$$

Furthermore, the tensor Ω_{ij} is the induced tensor on X_{n-1} of the tensor $D_{\beta}N_{\alpha}$ in SEX_n. That is [(I.3.38)],

$$
\Omega_{ij} = (D_{\beta} N_{\alpha}) B_i^{\alpha} B_j^{\beta} \tag{1.7}
$$

On the X_{n-1} of a SEX, the SE identity (I-4.3) can be written as

$$
k_{\alpha\beta}(\Omega_{ik}B_j^{\alpha} - \Omega_{kj}B_i^{\alpha})N^{\beta} = 0
$$
\n(1.8)

2. THE GENERALIZED FUNDAMENTAL EQUATIONS FOR THE HYPERSUBMANIFOLD OF SEX.

This section is devoted to the derivation of the generalized fundamental equations for the hypermanifold X_{n-1} of SEX_n. Here we derive the generalized Gauss formulas, Weingarten equations, and Gauss-Codazzi equations for X_{n-1} .

Submanifolds of SEX... II 869

Theorem 2.1. On X_{n-1} of an SEX_n the generalized coefficients of the second fundamental form Ω_{ii} may be given by

$$
\Omega_{ij} = \stackrel{0}{\Omega}_{ij} - 2k_{(\alpha}^{\ \gamma} X_{\beta)} B_i^{\alpha} B_j^{\beta} N_{\gamma}
$$
 (2.1)

where $\stackrel{0}{\Omega}_{ij}$ are the coefficients of the second fundamental form with respect to the Christoffel symbols $\{x_u\}$.

Proof. Substituting $(I.2.12)$ into (1.7) and making use of (1.1) and (1.7) , our assertion follows in the following way:

$$
\Omega_{ij} = [\partial_{\beta} N_{\alpha} - N_{\gamma} (\{\alpha \beta\} + 2k_{(\alpha}^{\gamma} X_{\beta)} + 2\delta_{[\alpha}^{\gamma} X_{\beta]})] B_{i}^{\alpha} B_{j}^{\beta}
$$

= $\Omega_{ij} - 2k_{(\alpha}^{\gamma} X_{\beta)} B_{i}^{\alpha} B_{j}^{\beta} N_{\gamma}$

Remark 2.2. In virtue of (2.1), we note that *the tensor* Ω_{ii} *is symmetric*

on X_{n-1} of SEX_n, while the generalized coefficients $\hat{\Omega}_{ij}$ is not symmetric on a general submanifold X_m of X_n [(I.3.38)].

Theorem 2.3. (The generalized Gauss formulas for SEX_n .) On the X_{n-1} of a SEX_n the following relation holds

$$
D_j B_i^{\alpha} = -\stackrel{0}{\Omega}_{ij} N^{\alpha} + 2k_{(\beta}{}^{\epsilon} X_{\gamma)} B_i^{\beta} B_j^{\gamma} N_{\epsilon} N^{\alpha}
$$
 (2.2)

Proof. Substituting (2.1) into (1.5), we have (2.2). \blacksquare

In order to prove the generalized Weingarten equations, we need the induced tensors M^i of $D_B N^{\alpha}$ and M_i of $(D_B N^{\alpha})N_{\alpha}$, respectively, on X_{n-1} of SEX_n :

$$
M_j^i = (D_\beta N^\alpha) B_\alpha^i B_j^\beta \tag{2.3a}
$$

$$
M_j = (D_{\beta} N^{\alpha}) N_{\alpha} B_j^{\beta} = -(D_{\beta} N_{\alpha}) N^{\alpha} B_j^{\beta}
$$
 (2.3b)

In the following three theorems, we derive useful representations of the induced tensors M_i^i and M_i .

Theorem 2.3. In an SEX_n the system of equations (I.2.8b) may be given by

$$
D_{\omega}g_{\lambda\mu} = 4g_{\lambda[\omega}X_{\mu]}
$$
 (2.4)

which can be split into

$$
D_{\omega}h_{\lambda\mu} = 2(X_{(\lambda}g_{\mu)\omega} - h_{\lambda\mu}X_{\omega})
$$
\n(2.5a)

$$
D_{\omega}k_{\lambda\mu} = 2(X_{\mu}g_{\lambda\,]\omega} - k_{\lambda\mu}X_{\omega})
$$
\n(2.5b)

Furthermore, in an SEX_n we also have

$$
D_{\omega}h^{\lambda\nu} = -2h^{\lambda\alpha}h^{\nu\beta}(X_{(\alpha}g_{\beta)\omega} - h_{\alpha\beta}X_{\omega})
$$
 (2.6)

œ

Proof. Substitution of (I.2.9) into (I.2.8b) gives (2.4). Equations (2.5a) and (2.5b) follows from (2.4) and

$$
D_{\omega}h_{\lambda\mu}=D_{\omega}g_{(\lambda\mu)},\qquad D_{\omega}k_{\lambda\mu}=D_{\omega}g_{[\lambda\mu]}
$$

On the other hand, if we differentiate both sides of (I.2.4) with respect to y^{ν} and substitute (2.5a), we get

$$
h_{\lambda\mu}D_{\omega}h^{\lambda\nu} = -h^{\lambda\nu}D_{\omega}h_{\lambda\mu} = -2h^{\lambda\nu}(X_{(\lambda}g_{\mu)\omega} - h_{\lambda\mu}X_{\omega})
$$

The relation (2.6) follows immediately by multiplying by $h^{\alpha\mu}$ on both sides of the above equation. \blacksquare

Theorem 2.4. The induced tensor M_i^i is given by

$$
M_j^i = -2h^{im} X_{(\alpha} k_{\beta)}^N N^{\alpha} B_m^{\beta} B_j^{\gamma} - \delta_j^i X_{\alpha} N^{\alpha} + h^{im} \Omega_{mj}
$$
 (2.7)

Proof. Equation (2.3a) gives

$$
M_j^i = (D_\beta(h^{\alpha\gamma}N_\gamma))B_\alpha^i B_j^\beta
$$

= $(D_\beta h^{\alpha\gamma})N_\gamma B_\alpha^i B_j^\beta + h^{\alpha\gamma}(D_\beta N_\gamma)B_\alpha^i B_j^\beta$ (2.8)

Substituting (2.6) into (2.8) and making use of (1.3) , $(1-3.18)$, (1.1) , and (1.7) , we have (2.7) .

Theorem 2.5. The induced vector M_i is given by

$$
M_j = X_{\alpha} B_j^{\alpha} - X_{(\alpha} k_{\beta)\gamma} N^{\alpha} N^{\beta} B_j^{\gamma}
$$
 (2.9)

Proof. Generalized covariant differentiation of both sides of the last relation of (1.1) with respect to x^j gives

$$
(D_{\gamma}h_{\alpha\beta})N^{\alpha}N^{\beta}B_{j}^{\gamma}+2h_{\alpha\beta}(D_{\gamma}N^{\alpha})N^{\beta}B_{j}^{\gamma}=0
$$
 (2.10)

Our representation (2.9) immediately follows by substituting (2.5a) and $(2.3b)$ into (2.10) and making use of (1.1) .

Now, we are ready to prove the following generalized Weingarten equations.

Theorem 2.6a. (The first representation of the generalized Weingarten equations in SEX_n .) On the X_{n-1} of an SEX_n the following relation holds:

$$
\rho_{j}N^{\alpha} = X_{(\epsilon}k_{\beta)\gamma}(N^{\alpha}N^{\beta} - 2h^{\alpha\beta})N^{\epsilon}B_{j}^{\gamma} + h^{im}\Omega_{mj}B_{i}^{\alpha} - X_{\beta}N^{\beta}B_{j}^{\alpha} + X_{\beta}N^{\alpha}B_{j}^{\beta}
$$
\n(2.11)

Proof. Substituting (1.2a) for δ_{γ}^{α} into

$$
\stackrel{0}{D_j}N^{\alpha} = (D_{\beta}N^{\alpha})B_j^{\beta} = (\delta^{\alpha}_{\gamma}D_{\beta}N^{\gamma})N_j^{\beta}
$$

and making use of $(2.3a)$, $(2.3b)$, and $(1.3.15)$, we have

$$
\stackrel{0}{D_j}N^{\alpha} = M_j^i B_i^{\alpha} + M_j N^{\alpha} \tag{2.12}
$$

Submanifolds of SEX_n. II 871

Our assertion (2.11) immediately follows by substituting (2.7) and (2.9) into (2.12) and making use of $(1.4b)$.

Theorem 2.6b. (The second representation of the generalized Weingarten equations in SEX_n .) On the X_{n-1} of an SEX_n the following relation holds:

$$
\stackrel{0}{D_j}N_{\alpha} = \Omega_{ij}B_{\alpha}^i + X_{(\beta}k_{\varepsilon)\gamma}N_{\alpha}N^{\beta}N^{\varepsilon}B_j^{\gamma} - X_{\beta}N_{\alpha}B_j^{\beta}
$$
 (2.13)

Proof. Substituting (2.5a) and (2.11) into

$$
\stackrel{0}{D_j}N_{\alpha}=\stackrel{0}{D_j}(h_{\alpha\beta}N^{\beta})=h_{\alpha\beta}\stackrel{0}{D_j}N^{\beta}+(D_{\gamma}h_{\alpha\beta})N^{\beta}B_j^{\gamma}
$$

and making use of (1.1) , we have (2.13) .

In order to derive the generalized Gauss-Codazzi equations, we need the following curvature tensors of SEX_n and its hypersubmanifold X_{n-1} :

$$
R_{\omega\mu\lambda}^{\nu} = 2(\partial_{[\mu}\Gamma_{|\lambda|\omega]}^{\nu} + \Gamma_{\alpha[\mu}^{\nu}\Gamma_{|\lambda|\omega]}^{\alpha})
$$
 (2.14)

$$
R_{ijk}^{\ \ m} = 2(\partial_{[j} \Gamma_{[k|i]}^m + \Gamma_{p[j}^m \Gamma_{[k|i]}^p)) \tag{2.15}
$$

Theorem 2.7. (The generalized Gauss-Codazzi equations in SEX_n .) On the X_{n-1} of an SEX_n the curvature tensors defined by (2.14) and (2.15) are involved in the following identities:

$$
R_{ijk}^{\quad \mu} = R_{\beta\gamma\epsilon}{}^{\alpha} B_{\alpha}^{\rho} B_{k}^{\epsilon} B_{j}^{\gamma} B_{i}^{\beta} + 2(\Omega_{m[j}\Omega_{|k|i]}h^{mp}B_{p}^{\alpha}) + X_{\beta}N^{\beta}\Omega_{k[j}\delta_{i]}^{\rho} + k_{\gamma}^{\alpha}X_{\beta}N^{\beta}\Omega_{k[i}B_{j]}^{\gamma}B_{\alpha}^{\rho})
$$
(2.16)

$$
2\overset{0}{D}_{[k}\Omega_{[i|j]} = R_{\beta\gamma\epsilon}{}^{\alpha}N_{\alpha}B_{k}^{\beta}B_{j}^{\gamma}B_{i}^{\epsilon} + 2(X_{\beta}\Omega_{i[k}B_{j]}^{\beta} + 2\Omega_{i[k}X_{j]}) \qquad (2.17)
$$

Proof. In virtue of (1.5), (2.14), (2.15), and

$$
\overset{0}{D}_{j}B_{i}^{\alpha}=B_{ij}^{\alpha}+\Gamma_{\beta\gamma}^{\alpha}B_{i}^{\beta}B_{j}^{\gamma}-\Gamma_{ij}^{k}B_{k}^{\alpha}
$$

we have

$$
2\overset{0}{D}_{[k}\overset{0}{D}_{j]}B_{i}^{\alpha} = 2[\partial_{[k}(\overset{0}{D}_{j]}B_{i}^{\alpha}) - \Gamma_{[jk]}^{m}(\overset{0}{D}_{m}B_{i}^{\alpha}) - \Gamma_{i[k}^{m}(\overset{0}{D}_{j]}B_{m}^{\alpha}) + \Gamma_{\beta\gamma}^{\alpha}(\overset{0}{D}_{[j}B_{[i]}^{\beta})B_{k}^{\gamma}]
$$

$$
= -R_{\epsilon\gamma\beta}^{\alpha}B_{i}^{\beta}B_{j}^{\gamma}B_{k}^{\epsilon} + R_{kj}^{\beta}B_{m}^{\alpha} + 4\Omega_{i[j}X_{k]}N^{\alpha}
$$
(2.18)

where use of the relation

$$
S_{jk}^{\ \ m} = 2 \delta_{[j}^{\ \ m} X_{k]}
$$

has been made in the above lengthy calculation. On the other hand, the relations (1.5) and (2.11) give

$$
\hat{D}_{\{k}\hat{D}_{j\}}B_{i}^{\alpha} = -2(\hat{D}_{\{k}\Omega_{[i|j]}\})N^{\alpha} - 2\Omega_{i[j}\hat{D}_{k\}}N^{\alpha}
$$
\n
$$
= -2(\hat{D}_{\{k}\Omega_{[i|j]}\} + X_{\beta}\Omega_{i[j}B_{k\})N^{\alpha}
$$
\n
$$
-2X_{(\epsilon}k_{\beta)\gamma}N^{\epsilon}N^{\beta}B_{[k}^{\gamma}\Omega_{[i|j]}\!N^{\alpha} + 2\Omega_{m[j}\Omega_{[i|k]}\!h^{mp}B_{p}^{\alpha}
$$
\n
$$
+ 2X_{\beta}N^{\beta}\Omega_{i[j}B_{k\}^{\alpha} + 4h^{\alpha\beta}X_{(\epsilon}k_{\beta)\gamma}N^{\epsilon}\Omega_{i[j}B_{k\}^{\gamma}] \qquad (2.19a)
$$

In virtue of the SE identity (1.8) and the symmetry of Ω_{ii} , the second and **the fifth terms of the last equation of (2.19a) are**

$$
Second Term = 0 \tag{2.19b}
$$

$$
\begin{split} \text{Fifth Term} &= -2X_{\epsilon}k_{\gamma}^{\ \alpha}N^{\epsilon}\Omega_{i\{j\}}B_{k\{1\}}^{\gamma} + 2X^{\alpha}k_{\epsilon\gamma}\Omega_{i\{j\}}B_{k\{1\}}^{\gamma}N^{\epsilon} \\ &= 2k_{\gamma}^{\ \alpha}X_{\beta}N^{\beta}\Omega_{i\{k\}}B_{j\{1\}}^{\gamma} \end{split} \tag{2.19c}
$$

Comparing (2.18) and (2.19), one finally gets

$$
R_{kji}^{\alpha}{}^{m} B_{m}^{\alpha} = R_{\epsilon\gamma\beta}{}^{\alpha} B_{i}^{\beta} B_{j}^{\gamma} B_{k}^{\epsilon} + 2\left(-\overset{\upsilon}{D}_{[k}\Omega_{[i]j]} + X_{\beta}\Omega_{i[k}B_{j]}^{\beta} + 2\Omega_{i[k}X_{j]}\right)N^{\alpha} + 2(\Omega_{m[j}\Omega_{[i]k]}h^{mh}B_{h}^{\alpha} + X_{\beta}N^{\beta}\Omega_{i[j}B_{k]}^{\alpha} + k_{\gamma}{}^{\alpha}X_{\beta}N^{\beta}\Omega_{i[k}B_{j]}^{\gamma}) \tag{2.20}
$$

Making use of (I.3.16), the identity (2.16) follows by multiplying by B_{α}^{p} **on both sides of (2.20) and interchanging the indices i and k. On the other** hand, multiplying by N_a on both sides of (2.20) and using the SE identity (1.8) , we have (2.17) .

REFERENCES

Chung, K. T. (1963). Einstein's connection in terms of $*g^{\lambda\nu}$, *Nuovo Cimento* (*X*), **27**, 1297-1324. Chung, K. T., and Song, M. S. (1968). Conformal change in Einstein's $*g^{\lambda\nu}$ -unified field theory. -I, *Nuovo Cimento (X),* 58B, 20t-212.

- Chung, K. T., and Chang, K. S. (1969). Degenerate cases of the Einstein's connection in *g-UFT. -I, *Tensor,* 20, 143-149.
- Chung, K. T., and Han, T. S. $(1981a)$. *n*-dimensional representations of the unified field tensor .gA~, *International Journal of Theoretical Physics,* **20,** 739-747.
- Chung, K. T., and Yang, S. K. (1981b). On the relations of two Einstein's 4-dimensional unified field theories, *Journal of Korean Mathematical Society,* 18, 43-48.
- Chung, K. T., and Cho, C. H. (1983). Some recurrence relations and Einstein's connection in 2-dimensional unified field theory, *Acta Mathematical Hungarica,* 41, 47-52.
- Chung, K. T., and Cheoi, D. H. (1985). A study on the relations of two n-dimensional unified field theories, *Acta Mathematica Hungarica,* 45, 141-149.
- Chung, K. T., and Cho, C. H. (1987). On the n-dimensional SE-connection and its conformal change, *Nuovo Cimento,* 100B(4), 537-550.
- Chung, K. T., and Lee, I. Y. (1988a). Curvature tensors and unified field equations on SEX_n , *International Journal of Theoretical Physics,* 27, 1083-1104.

Submanifolds of SEX_n. II 873

- Chung, K. T., and Hwang, I. H. (1988b). Three- and five-dimensional considerations of the geometry of Einstein's *g-unified field theory, *International Journal of Theoretical Physics,* 27, 1105-1136.
- Chung, K. T., So, K. S., and Lee, J. W. (1989). On the geometry of the submanifolds of SEX_n . I. The C-nonholonomic frame of reference, *International Journal of Theoretical Physics,* 28, 851-866.
- Einstein, A. (1950). The *Meaning of Relativity,* Princeton University Press, Princeton, New Jersey.
- Hlavatý, V. (1957). *Geometry of Einstein's Unified Field Theory*, Noordhoop.
- Mishra, R. S. (1962). Recurrence relations in Einstein's unified field theory, *Tensor, N.S.,* 12, 90.
- Wrede, R. C. (1958). n-dimensional considerations of the basic principles A and B of the unified theory of relativity, *Tensor,* 8, 95-122.